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NON-REFLECTING BOUNDARY CONDITIONS
APPLICABLE TO GENERAL PURPOSE CFD SIMULATORS
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SUMMARY

In simulations of propagating blast waves the effects of artificial reflections at open boundaries can
seriously degrade the accuracy of the computations. In this paper, a boundary condition based on a local
approximation by a plane traveling wave is presented. The method yields small artificial reflections at
open boundaries. The derivation and the theory behind these so-called plane-wave boundary conditions
are presented. The method is conceptually simple and is easy to implement in two and three dimensions.
These non-reflecting boundary conditions are employed in the three-dimensional computational fluid
dynamics (CFD) solver FLACS, capable of simulating gas explosions and blast-wave propagation in
complex geometries. Several examples involving propagating waves in one and two dimensions, shock
tube and an example of a simulation of a propagating blast wave generated by an explosion in a
compressor module are shown. The numerical simulations show that artificial reflections due to the
boundary conditions employed are negligible. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

When considering the consequences of gas explosions on offshore facilities, the emphasis is on
the consequences in the area where the gas release would occur and is ignited. The possible
consequences in the direct surroundings of such areas should also be considered. Blast waves
generated by the initial explosion would propagate towards the living quarters or accommoda-
tion module, bridges connecting two neighbouring platforms, fire protection screens, life boats,
etc. and possibly cause substantial damage there. Simulation tools to take into account these
effects are needed. The computational fluid dynamics (CFD) simulator FLACS [1,2] is capable
of simulating gas explosions and blast-wave propagation in obstructed, complex geometries.

The FLACS simulator can be run with several numerical blocks. The explosion takes place
in the central block. The so-called FLACS solver is used here, and the averaged Navier–Stokes
equations are solved, including the effects of turbulence and combustion. A finite volume
discretization scheme is employed together with the SIMPLE [3] solution strategy where the
momentum and continuity equations are solved in a segregated manner. A standard upwind
scheme is used in the computation of the convective terms. The SIMPLE solution method
belongs to the class of pressure correction methods, which are popular in the primitive variable

* Correspondence to: Christian Michelsen Research A/S, Fantoftveien 38, PO Box 3, N-5036 Fantoft, Norway.
1 E-mail: Hans-Christen.Salvesen@cmr.no
2 E-mail: Rune.Teigland@cmr.no; present address: AMES Department, UC San Diego, La Jolla, USA.

CCC 0271–2091/98/130523–18$17.50
© 1998 John Wiley & Sons, Ltd.

Recei6ed July 1996
Re6ised December 1996



H.-C. SALVESEN AND R. TEIGLAND524

computation of complex industrial flows. The methods use a predictor-corrector approach to
the solution of the Navier–Stokes equations and is a widely used method in CFD codes. It is
a robust methodology applicable for complex, turbulent, reactive flows and it is potentially
applicable to all regimes, from incompressible to supersonic flows.

Blast waves will propagate outward from the center of the explosion and into surrounding
numerical blocks. If simulation of combustion is not important in such a block, the so-called
blast solver can be used. Then the Euler equations in primitive variable form are solved based
on the pressure correction method ICE [4,5], and using an explicit FCT method [6] in the
calculation of the convection terms. This blast solver saves both execution time and memory
in comparison with the fully implicit approach adopted in the FLACS solver.

After some time, depending on the size of the computational domain and the scenario, the
blast waves reach the boundary of the computational domain. The computational domain is
finite, and boundary conditions must be imposed at the edges of the grid. In general, a part
of the boundary is an open boundary. These boundary conditions can generate spurious
fluctuations that render the computational solution entirely unacceptable. Different boundary
conditions for unsteady compressible flows have been proposed [7]. One such class of methods
is based on quasi-one-dimensional characteristics, e.g. Reference [8].

In the present work, boundary conditions giving negligible artificial reflections at the open
boundary of the computational domain are presented. These so-called plane-wave boundary
conditions have been implemented in the three-dimensional FLACS simulator. The theory and
derivation of these conditions are explained, and a comparison with the boundary conditions
presented in Reference [9] is shown. The numerical results are presented here, simulating
several problems involving propagating waves as well as a blast wave arising from an explosion
in a compressor module.

It should be noted that more efficient methods exist for the solution of the Euler equations,
e.g. Riemann type solvers. However, our emphasis is on presenting the plane-wave boundary
conditions and implementing them in the CFD code FLACS, used for simulation of gas
explosions and blast-wave propagation in complex geometries.

2. LOCAL APPROXIMATION BY A PLANE TRAVELING WAVE AT AN OPEN
BOUNDARY

The one-dimensional Euler equations for an inviscid, perfect gas, are given in conservative
form by
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representing conservation of mass, momentum, and energy, respectively. Here, e is the total
energy per unit mass,
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1
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u2, (4)
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o is the internal energy per unit mass, related to the pressure p by

p= (g−1) ro. (5)

In primitive variable form the Euler equations can be rewritten as the non-linear system
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and c=
gp/r is the speed of sound. The characteristic values (eigenvalues) of the matrix A
are

l1=u−c, (9)

l2=u, (10)

l3=u+c. (11)

The non-linear system Equation (6) can be transformed to the set of characteristic equations
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Following Thompson [9], incoming modes are set to zero at an open boundary. Consider
subsonic flow with an open boundary in the positive x-direction. Then the eigenvalue
l1=u−c is directed inward, and the non-reflecting condition demands
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Thus the characteristic Equation (12) is reduced to
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Furthermore, if the eigenvalue l2=u is directed inward, uB0, the non-reflecting condition
demands
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and the characteristic Equation (13) is reduced to

(p
(t

−c2 (r

(t
=0. (18)

When Equations (13)–(16) are linearized according to the approximation of linear acoustics,
the resulting equations can easily be solved. The general solution is that of a plane wave
traveling in the positive x-direction, as shown below.

The dependent variables are written as

p=p0+p %, (19)

r=r0+r %, (20)

u=u0+u %, (21)

c=c0+c %, (22)

where the primed variables represent the acoustic disturbance from the ambient state. It is
assumed that the fluid is a homogeneous, quiescent medium of wave propagation, i.e. all
ambient quantities are independent of position and time, and the ambient velocity is zero,
u0=0. The expressions in Equations (19)–(22) are inserted into (13)–(16), and in the linear
approximation terms of second- or higher-order are discarded. Terms with one primed variable
are of first-order, terms with two primed variables are of second-order, etc.

The linearized equations are given by
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Integrating Equations (23) and (24) shows that (p %−r0c0u %) equals an arbitrary constant.
Assuming that the ambient state is defined, so that u %0 corresponds to p %0, this constant
is set to zero. Thus

u %=
p %

r0c0

, (27)

and Equation (26) can be rewritten as
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being a linear advection equation for p %. The general solution of this equation is

p %= f
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where the function f is arbitrary.
Integrating Equation (25) one sees that

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 523–540 (1998)



NON-REFLECTING BOUNDARY CONDITIONS 527

p %−c0
2r %=h(x), (30)

where h is an arbitrary function. Seeking wave-like solutions for r %, h(x)0 is set, so that

r %=
p %
c0

2, (31)

and the linearized version of Equation (17) is satisfied (no incoming mode for the eigenvalue
l2). The relation in Equation (31) can also be deduced by assuming constant entropy in the
thermodynamic relation

p=p(r, s0), (32)

so that the pressure is a function of the density only. A Taylor expansion in r % gives

p0+p %=p(r0+r %, s0)=p0+
�(p
(r

�
s 0

r %+O((r %)2). (33)

Neglecting terms of second- or higher-order in the primed variables, and recognizing that
c0

2= ((p/(r)s 0
[10], the Taylor expansion in Equation (33) leads to the relation in Equation

(31).
To summarize, the general solution of the linearized characteristic equations, assuming that

there are no incoming modes, is that of a plane traveling wave as seen from Equations (27),
(29) and (31).

Thompson [9] applied the system of quasi-linear characteristic Equations (12)–(14) directly
to obtain non-reflecting boundary conditions. Conditions based on the general solution of the
linearized equations were developed in this study. These conditions are easy to generalize to
three space dimensions, and numerical testing (see Section 4) shows that for outgoing blast
waves these conditions give negligible reflections at an open boundary.

In three space dimensions, a single plane traveling wave is described by the primary variables
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where, as before, p0 is the ambient pressure, r0 is the ambient density, c0 is the speed of sound
corresponding to the ambient state, the function f is arbitrary, and l is the unit vector in the
direction which the plane wave propagates. A derivation of these results is found in e.g.
Reference [10].

If the primary variables are known at x=0, t=0, values of nearby positions in both space
and time may be approximated by a Taylor expansion, provided that the function f is smooth
enough
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If the derivative f %(0) and the wave propagation vector l are not known in advance, they can
be determined from

(

(t
u(0, 0)= l

f %(0)
r0c0

, (40)

�l�=1, (41)

and the sign of (/(t r(0, 0) being the sign of f %(0). Equation (40) is obtained here by
differentiation of Equation (36). The philosophy when applying this to open boundary
conditions in numerical calculations is as follows. Assume that the flow field close to the open
boundary may be locally approximated by a plane wave. Apply the Taylor expansions in
Equations (37)–(39) to obtain approximations of the primary variables for the next time step
at the boundary grid nodes. The position x=0 corresponds to a grid node adjacent to, but not
at the boundary of the computational domain. The time t=0 corresponds to the current time
step. The derivative f %(0) and the wave propagation vector l are estimated using Equations (40)
and (41). Details on how this has been implemented are given in Section 3. A Cartesian grid
is considered where the scalar variables are stored at the central nodes, but the velocity
components are stored at staggered nodes. The method could also have been implemented on
a colocated grid.

3. DERIVATION OF PLANE-WAVE BOUNDARY CONDITIONS ON A
STAGGERED GRID

The Taylor expansions given by Equations (37)–(39) are implemented on a Cartesian grid. The
derivative f %(0) and the wave propagation vector l are estimated using Equations (40) and (41).
The case of an open boundary with outward normal pointing in the positive x-direction is

Figure 1. Geometry of the numerical grid at the boundary in the positive x-direction. Grid nodes in the xy-plane are
shown. The scalar variables p, r, c, are stored at the central node O and the boundary node e. The velocity component
u is stored at the staggered node w and the boundary node e. The velocity component 6 is stored at the staggered nodes
n, s, and the staggered boundary nodes ne, se. The velocity component w is stored in a similar manner as 6, but in the
xz-plane. In this case the node n (north) in the positive y-direction is replaced by the node t (top) in the positive

z-direction, and similarly, ne, s, se are replaced by te, b, be, respectively.
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considered (see Figure 1). The scalar variables are stored at the central node, but the velocity
components are stored at staggered nodes. Boundaries with normals in other directions are
treated in a similar manner.

In the following analysis x=0 corresponds to the staggered node w where the velocity
component u is stored. Values from three different time steps are considered. The superscripts
n, n−1, n+1, correspond to values at the current time step, previous time step and next time
step, respectively; t=0 corresponds to the current time step.

The partial derivative (/(t u(0, 0) is approximated by
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These approximations may be justified by differentiating the expression for u(x, t) in Equation
(36), giving
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Provided that the function f % is smooth enough
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In accordance with Equation (40), the components of the normalized wave propagation
direction l are determined by

li=
sgn(f %(0)) (/(t ui(0, 0)

�(/(t u(0, 0)� , i=1, 2, 3. (48)

The subscripts 1, 2, 3, correspond to components in the x-, y-, z-directions, respectively. The
function sgn(j) is defined as 1 when j]0, and −1 otherwise. In the numerical calculations
we use

sgn(f %(0))=sgn(rO
n −rO

n−1), (49)

utilizing the fact that f %(0)=c0
2 (/(t r(0, 0) from Equation (35). Again, using Equation (40),

the derivative f %(0) is determined by
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In the numerical calculations rO
n and cO

n are functions of time.
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In the case of the velocity component u, the Taylor expansion of u(x, t) in Equation (39) can
now be applied directly to obtain

ue
n+1=uw

n +
l1 f %(0)((tn+1− tn)− (l1Dx)/cO

n )
rO

n cO
n , (51)

where Dx is the length of the control volume in the x-direction, i.e. the distance between the
nodes w and e. Since the velocity components 6 and w are stored in other staggered nodes than
u, Equation (39) cannot be applied directly in this case. First set x=x1 in this equation and
then x=x2, t=0, and subtract the second equation from the first to obtain

u(x1, t)=u(x2, 0)+ l
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This modified Taylor expansion can now be applied to obtain

6 se
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Note that the distance between the staggered node s (b) and the staggered boundary node se
(be) is 0.5Dx.

In the case of the pressure and the density, the Taylor expansions (37) and (38) are modified
in a similar manner as shown in Equation (52)
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Application of these two modified Taylor expansions leads to
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Note that when implementing the plane-wave boundary conditions, no knowledge of the
ambient states assumed in the plane-wave relations in Equations (34)–(36) is needed. The fact
that 6 se

n+1, wbe
n+1 are considered in this implementation and not 6ne

n+1, wte
n+1 is a choice that we

have made. Instead, 6ne
n+1, wte

n+1 could have been considered, giving similar results. The
important thing when the plane-wave boundary conditions are implemented in the numerical
code, is that the value for the next time step of the 6-velocity (w-velocity) at each boundary
node is computed (a loop over all the control volumes adjacent to the considered boundary of
the computational domain). Other ways of implementing the basic idea of the plane-wave
boundary conditions are possible. Note that these boundary conditions are employed only
when the wave propagation vector l is either parallel with the boundary or pointing out of the
computational domain. When the wave propagation vector is pointing into the computational
domain or when the norm of (/(t u(0, 0) is very small (below a fixed small value), other
boundary conditions are used. In this study, these are the characteristic boundary conditions
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based on the theory of characteristics employed on the reduced, one-dimensional problem of
flow perpendicular to the boundary [4,11]. These conditions employ zero-order extrapolation
in space of the characteristic variables (p−r0c0u), (p−c0

2r), (p+r0c0u) (obtained from
Equation (6), assuming that the coefficient matrices are locally constant, subscript 0 denotes
locally constant values) with one modification: for subsonic flow there is at least one incoming
mode, implying that at least one condition must be set at the boundary. The approach chosen
is such that this condition is given by p=pconst at the boundary, i.e. the boundary pressure has
a constant value, usually the ambient pressure (an exception is in the shock tube problem used
as a test problem in the next section, here the boundary pressure is set to the value from the
previous time step). When the code switches over to the characteristic conditions the boundary
pressure gradually approaches the constant pressure defined in the characteristic conditions, to
ensure a smooth transition. Note that the plane-wave boundary conditions are not employed
when the flow is stationary. In this case (/(t u(0, 0)=0 and no wave propagation direction can
be determined.

4. RESULTS OF TEST CALCULATIONS

The plane-wave boundary conditions are tested for one-, two- and three-dimensional flow. A
shock tube problem is considered where results using the plane-wave boundary conditions are
compared with results using the non-linear, non-reflecting boundary conditions of Thompson.
Furthermore, a single wave traveling in one and two dimensions is considered. In the
one-dimensional case, a comparison is made with the results using the conditions of Thomp-
son. Two blast waves intersecting each other at a right angle in two dimensions are also
simulated. An example of a multiblock simulation of a blast wave from a gas explosion in
three dimensions using the plane-wave boundary conditions is also shown. The plane-wave
conditions behave similarly using the FLACS solver compared with the blast solver (cf. Section
1). In the numerical results shown here, the FLACS solver is employed in the one-dimensional
simulations, and in the central block in the case where a gas explosion in a module is
simulated. Otherwise the blast solver is employed. Practical use of the plane-wave boundary
conditions in three-dimensional simulations is also reported in Reference [2].

4.1. Shock tube problem

In the shock tube problem, a long one-dimensional tube is divided into low- and high-pres-
sure regions, separated by a diaphragm. At a time equal to zero, the diaphragm is instantly
removed and a pressure discontinuity travels toward the low-pressure region and a rarefaction
wave travels toward the high-pressure region. The detailed solution of the shock tube problem
can be found in Reference [8]. In this study, at time of zero, the temperature is 293 K
uniformly, and the velocity is zero uniformly. The pressure at the right side of the diaphragm
is 100 kPa, at the left side 200 kPa. From the ideal gas relation for air, it is then found that
the density at the right side is 1.19 kg m−3, at the left 2.39 kg m−3. The specific heat ratio g

is 1.4. The length of the computational domain is 1 m, and the diaphragm is in the middle of
the tube before it is removed. The grid resolution is 200 control volumes of uniform length.
Plots of velocity, pressure and density are shown as a function of position at t=1.0 ms, and
t=1.6 ms. It is seen from the plots at t=1.0 ms, see Figure 2, that the constant levels of the
exact solution are quite well represented by the numerical solution, but the numerical solutions
are smeared out at the discontinuities of the exact solution because a first-order upwind
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Figure 2. Shock tube for air, g=1.4, with initial conditions u=0, T=293 K uniformly, p=200 kPa in high-pressure
region (xB0.5 m), p=100 kPa in low-pressure region (x\0.5 m). Overpressure (pressure minus 1.0 bar), density,
velocity, as function of position at t=1.0 ms. No wave (shock wave or rarefaction wave) has reached the boundary
of the computational domain. The results are the same using the boundary conditions of Thompson compared with

the plane-wave conditions.
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scheme is used in our FLACS solver. The purpose of this exercise is, however, not to see how
well the discontinuity can be represented, but to show how the numerical boundary conditions
presented here are performing. Neither the shock wave nor the rarefaction wave has yet
reached the boundary of the computational domain at t=1.0 ms. No difference is seen
between the results using the boundary conditions of Thompson, and the results using the
plane-wave conditions. At t=1.6 ms (see Figure 3), both the rarefaction wave and the shock
wave have reached the boundary of the computational domain. Results using the non-linear,
non-reflecting boundary conditions of Thompson are different compared with results with the
plane-wave conditions. The numerical results near the boundary in the positive direction are
somewhat better using the conditions of Thompson.

4.2. A single blast wa6e in one dimension

A one-dimensional blast wave in air, g=1.4, traveling in the positive x-direction, is
considered. The computational domain is 70 m long. The grid resolution is one control volume
per meter. The initial conditions at t=0 for x\0 are u=0, p=p0=1 bar, T=293 K,
uniformly. To simulate a blast wave entering the computational domain at t=0, the pressure,
density and velocity at the inlet x=0 are set to

pinlet=
!ps+ (p0−ps)

t
Dtsp0

when 05 t5Dt s

when Dt sB t,
(59)

rinlet=
!r s+ (r0−rs)

t
Dts

r0

when 05 t5Dt s

when Dt sB t,
(60)

uinlet=
!us−us

t
Dts0

when 05 t5Dt s

when Dt sB t.
(61)

Here, Dts=60 ms is the duration of the blast wave and r0=1.19 kg m−3 is the ambient
density (computed from ideal gas law for air at ambient pressure, temperature). The boundary
conditions at the open boundary in the positive x-direction are either the boundary conditions
of Thompson or the plane-wave conditions.

It can be shown from the shock relations that the density rs and the velocity us are given in
terms of the pressure ps, the ratio of specific heat g, and the ambient entities, by

rs−r0=
ps−p0

((g−1)ps+ (g+1)p0)/2r0

, (62)

us=
psp0

r0
g(ps+p0)/(rs+r0)

rs+r0

rs(
r0/rs+
rs/r0)
. (63)

In the limit of a weak shock, ps�p0, it is seen that

rs−r0:
ps−p0

g(p0/r0)
=

ps−p0

c0
2 , (64)

us:
ps−p0

r0
g(p0/ro)
=

ps−p0

r0c0

, (65)

are relations of linear acoustics, cf. the relations stated for a plane traveling wave in Equations
(34)–(36).

In one case, a compression wave with overpressure (ps−p0)=10 kPa is considered. In
Figure 4 the results are shown at different times for both the use of plane-wave boundary
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Figure 3. Shock tube for air, g=1.4, with initial conditions u=0, T=293 K uniformly, p=200 kPa in high-pressure
region (xB0.5 m), p=100 kPa in low-pressure region (x\0.5 m). Overpressure (pressure minus 1.0 bar), density,
velocity, as function of position at t=1.6 ms. Both the rarefaction wave and the shock wave have reached the
boundary of the computational domain. The results near the boundary in positive direction are somewhat better using

the boundary conditions of Thompson compared with the plane-wave conditions.
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Figure 4. One-dimensional compression-wave propagation in air, g=1.4, with initial conditions u=0, T=293 K,
p=p0=100 kPa for x\0. At t=0, x=0, a propagating wave enters the computational domain, the overpressure is
(ps−p0)=10 kPa, with a linear decay down to zero within 60 ms, cf. Equations (59)–(61). Negligible artificial
reflection at open boundary in positive direction using the plane-wave boundary conditions, or the boundary

conditions of Thompson.

conditions and the non-linear conditions of Thompson. In both cases the artificially reflected
wave is negligible. Similar results are seen in another numerical simulation with overpressure
(ps−p0)=100 kPa (see Figure 5).

4.3. A single blast wa6e in two dimensions

A two-dimensional simulation of a single blast wave with overpressure (ps−p0)=10 kPa
has also been performed using the plane-wave boundary conditions. The computational
domain is 70×30 m, one control volume covering 1×1 m. This case is similar to the
one-dimensional cases considered in Section 4.2, except that the wave propagates at a 45° angle
relative to the co-ordinate axes (see Figure 6).

No reflection from the open boundary can be seen from these plots. The contour lines are
not exactly straight lines, but slightly curved. This is due to numerical smearing of the front
and non-linear effects (the boundary conditions on the two sides where the plane wave enters
the computational domain are set as if it is exactly a linear plane wave entering, and inlet
values are set according to Equations (59)–(61)). At t=300 ms the blast wave has left the
computational domain. The absolute value of the overpressure is now less than 2.5% of the
maximum overpressure of the incoming wave (contour plot at t=300 ms not shown here).
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4.4. Two blast wa6es intersecting each other at a right angle

With the plane-wave boundary conditions the flow field is locally approximated by a single
plane wave. In general a flow field cannot be represented that simply. An example of this is
two plane waves crossing each other at a right angle. This case is considered analytically in
Reference [11], where a so-called formal expansion based on the assumption of a single plane
traveling wave is compared with a Taylor expansion. Numerical results are shown of two blast
waves crossing each other at a right angle using the plane-wave boundary conditions. One
blast wave is propagating in the positive x-direction, the other in the positive y-direction. Both
waves enter at t=0, the computational domain being 70 m in the x-direction and 30 m in the
y-direction. Each control volume of the numerical grid covers 1×1 m. The overpressure
(ps−p0) is 10 kPa for both waves with a linear decay down to zero overpressure within 60 ms,
cf. Equations (59)–(61). The results are for air, g=1.4, with initial conditions (u, 6)= (0, 0),
T=293 K, p=p0=100 kPa.

In Figure 7(a) a contour plot of the overpressure is shown at t=70 ms. It is seen that the
two waves interact, and the wave propagating in the y-direction is just about to start leaving
the computational domain. In Figure 7(b) the situation at t=145 ms is shown when the wave
traveling in the y-direction has just left the computational domain. It is seen that the wave
traveling in the x-direction is partly distorted. This is due to a non-linear interaction between
the two blast waves when they cross each other, and effects related to the boundary conditions.

At t=300 ms both blast waves have left the computational domain. The absolute value of
the overpressure is now 4% or less of the maximum overpressure of the incoming waves

Figure 5. One-dimensional compression-wave propagation in air, g=1.4, with initial conditions u=0, T=293 K,
p=p0=100 kPa for x\0. At t=0, x=0, a propagating wave enters the computational domain, the overpressure is
(ps−p0)=100 kPa, with a linear decay down to zero within 60 ms, cf. Equations (59)–(61). Negligible artificial
reflection at open boundary in positive direction using the plane-wave boundary conditions, or the boundary

conditions of Thompson.
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Figure 6. Two-dimensional blast-wave propagating at a 45° angle relative to the co-ordinate axes, the computational
domain is 70×30 m. The results are for air, g=1.4, with initial conditions (u, 6)= (0, 0) T=293 K, p=p0=100 kPa.
At t=0 a propagating wave enters the computational domain, the overpressure is (ps−p0)=10 kPa, with a linear
decay down to zero within 60 ms, cf. Equations (59)–(61). Contour-plots of the overpressure (kPa) at different
moments, (a) at t=50 ms, (b) at t=100 ms, (c) at t=150 ms. No reflection from the open boundary is seen using

the plane-wave boundary conditions.

(contour plot at t=300 ms not shown here). Thus, even in the difficult case of two blast waves
crossing each other at a right angle, the relative error due to effects of the boundary
conditions, is limited.

4.5. Blast wa6e from gas explosion in three dimensions

An example is given of practical use of the plane-wave boundary conditions in three
dimensions. Here an explosion in a compressor module is simulated. A combustible cloud
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Figure 7. Two-dimensional simulation of two blast waves crossing each other at a right angle using the plane-wave
boundary conditions. The computational domain is 70×30 m. The results are for air, g=1.4, with initial conditions
(u, 6)= (0, 0), T=293 K, p=p0=100 kPa. At t=0 a propagating wave enters the computational domain in the
positive x-direction and another wave in the positive y-direction, for both waves the overpressure is (ps−p0)=10 kPa,
with a linear decay down to zero within 60 ms, cf. Equations (59)–(61). Contour-plots of the overpressure (kPa) at
different moments, (a) at t=70 ms when the two waves interact, (b) at t=145 ms when the wave propagating upward

has left the computational domain.

filling the whole module is ignited in the central part. In Figure 8 pressure contours are shown
in a horizontal cut plane. The outgoing blast wave from the central part of the explosion is
shown. Several blocks are used in the simulation. Note that no artificial reflections are seen
from the boundary of the computational domain.

5. CONCLUSIONS

Boundary conditions based on a local approximation by a plane traveling wave have been
presented. The derivation of these boundary conditions was presented in detail. The plane-
wave boundary conditions are conceptually simple and are easy to implement in several
dimensions. In the numerical experiments involving propagating waves it has been shown that
the method yields negligible artificial reflections from open boundaries. The method has been
implemented in a three-dimensional CFD code for simulations of gas explosions and blast-
wave propagation in complex geometries.
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Figure 8. Example of three-dimensional multiblock simulation of gas explosion and blast-wave propagation with the
CFD code FLACS. A combustible cloud filling the whole compressor module is ignited in the central part. Contour
plot of overpressure (bar) in horizontal plane close to the ground. No artificial reflections are seen from the boundary

of the computational domain using the plane-wave boundary conditions.
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APPENDIX A. NOMENCLATURE

Latin letters
c speed of sound

(l1, l2, l3), wave propagation direction (unit vector)l
p pressure

entropys
t time
T temperature

(u, 6, w)= (u1, u2, u3), velocityu
(x, y, z), spatial co-ordinatesx

Greek letters
length of control volume in the x-directionDx
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g ratio of specific heats, cp/c6
densityr

Subscripts
ambient value, or locally constant value0

s shock value (Section 4)

Superscripts

previous time stepn−1
current time stepn
next time stepn+1
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